next up previous
Up: mlbmb Previous: Conclusions


Abraham et al., 1990
Abraham, N., Albano, A., Passamante, A., and Rapp, P., editors (1990).
Measures of complexity and chaos.
Plenum Press, New York.

Broggi, 1988
Broggi, G. (1988).
Evaluation of dimensions and entropies of chaotic systems.
J. Opt. Soc. Am. B, 5(5):1020.

Denker and Keller, 1986
Denker, M. and Keller, G. (1986).
Rigorous statistical procedures for data from dynamical systems.
J. Stat. Phys., 44:67.

Eckmann and Ruelle, 1985
Eckmann, J.-P. and Ruelle, D. (1985).
Ergodic theory of chaos and strange attractors.
Rev. Mod. Phys., 57(3):617.

Ellner, 1988
Ellner, S. (1988).
Estimating attractor dimensions from limited data: a new method, with error estimates.
Phys. Lett. A, 133(3):128.

Fraser and Swinney, 1986
Fraser, A. and Swinney, H. (1986).
Independent coordinates for strange attractors from mutual information.
Phys. Rev. A, 33(2):1134.

Grassberger et al., 1988
Grassberger, P., Badii, R., and Politi, A. (1988).
Scaling laws for invariant measures on hyperbolic and nonhyperbolic attractors.
J. Stat. Phys., 51(1,2):135.

Grassberger and Procaccia, 1983a
Grassberger, P. and Procaccia, I. (1983a).
Estimation of the kolmogorov entropy from a chaotic signal.
Phys. Rev. A, 28(4):2591.

Grassberger and Procaccia, 1983b
Grassberger, P. and Procaccia, I. (1983b).
Measuring the strangeness of strange attractors.
Physica, 9D:189.

Hénon, 1976
Hénon, M. (1976).
A two-dimensional mapping with a strange attractor.
Commun. Math. Phys., 50(1):69.

Kendall and Stuart, 1979
Kendall, M. and Stuart, A. (1979).
The advanced theory of statistics, volume 2.
Griffin, London, 4th edition.

Kostelich and Yorke, 1990
Kostelich, E. and Yorke, J. (1990).
Noise reduction: finding the simplest dynamical system consistent with the data.
Physica D, 41:183.

Packard et al., 1980
Packard, N., Crutchfield, J., Farmer, J., and Shaw, R. (1980).
Geometry from a time series.
Phys. Rev. Lett., 45:712.

Ramsey and Yuan, 1989
Ramsey, J. and Yuan, H.-J. (1989).
Bias and error bars in dimension calculations and their evaluation in some simple models.
Phys. Lett. A, 134(5):287.

Rensma et al., 1988
Rensma, P., Allessie, M., Lammers, W., Bonke, F., and Schalij, M. (1988).
The length of the excitation wave and the susceptibility to reentrant atrial arrhythmias in normal conscious dogs.
Circ. Res., 62:395-410.

Ruelle, 1990
Ruelle, D. (1990).
Deterministic chaos: the science and the fiction.
Proc. R. Soc. Lond. A, 427:241.

Schuster, 1988
Schuster, H. (1988).
Deterministic chaos, an introduction.
Physik-Verlag, Weinheim, $2^{\mbox{{\small nd}}}$ edition.

Takens, 1981
Takens, F. (1981).
Detecting strange attractors in turbulence.
In Lecture notes in mathematics, Vol.898. Dynamical systems and turbulence, page 366. Springer, Berlin.

Takens, 1983
Takens, F. (1983).
Invariants related to dimension and entropy.
In Atas do $13^{\circ}$. Colóqkio Brasiliero do Matemática, Rio de Janeiro.

Takens, 1985
Takens, F. (1985).
On the numerical determination of the dimension of an attractor.
In Lecture notes in mathematics, Vol.1125. Dynamical systems and bifurcations, page 99. Springer, Berlin.

Theiler, 1986
Theiler, J. (1986).
Spurious dimension from correlation algorithms applied to limited time-series data.
Phys. Rev. A, 34(3):2427-2432.

Theiler, 1988
Theiler, J. (1988).
Lacunarity in a best estimator of fractal dimension.
Phys. Lett. A, 133(4,5):195.

Theiler, 1990a
Theiler, J. (1990a).
Estimating fractal dimension.
J. Opt. Soc. Am. A, 7(6):1055.

Theiler, 1990b
Theiler, J. (1990b).
Statistical precision of dimension estimators.
Phys. Rev. A, 41(6).

Wolf et al., 1985
Wolf, A., Swift, J., Swinney, H., and Vastano, J. (1985).
Determining lyapunov exponents from a time series.
Physica, 16D:285.